Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(7): 101110, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467717

RESUMO

Multiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Imunoterapia/métodos , Linfócitos T , Plasmócitos/metabolismo
3.
Blood ; 140(11): 1263-1277, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772013

RESUMO

Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation. HSCs under physioxia also exhibited downregulation of the epigenetic modifier Tet2. Tet2 is α-ketoglutarate, iron- and oxygen-dependent dioxygenase that converts 5-methylcytosine to 5-hydroxymethylcytosine, thereby promoting active transcription. We evaluated whether loss of Tet2 affects the number and function of HSCs and hematopoietic progenitor cells (HPCs) under physioxia and ambient air. In contrast to wild-type HSCs (WT HSCs), a complete nonresponsiveness of Tet2-/- HSCs and HPCs to changes in oxygen tension was observed. Unlike WT HSCs, Tet2-/- HSCs and HPCs exhibited similar numbers and function in either physioxia or ambient air. The lack of response to changes in oxygen tension in Tet2-/- HSCs was associated with similar changes in self-renewal and quiescence genes among WT HSC-physioxia, Tet2-/- HSC-physioxia and Tet2-/- HSC-air. We define a novel molecular program involving Tet2 in regulating HSCs under physioxia.


Assuntos
5-Metilcitosina , Dioxigenases , 5-Metilcitosina/metabolismo , Diferenciação Celular/fisiologia , Dioxigenases/metabolismo , Regulação para Baixo , Células-Tronco Hematopoéticas/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos , Oxigênio/metabolismo
4.
Curr Opin Hematol ; 28(4): 231-242, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33656463

RESUMO

PURPOSE OF REVIEW: In recent history there have been three outbreaks of betacoronavirus infections in humans, with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; causing Coronavirus disease 2019 [COVID-19]) outbreak leading to over two million deaths, with a rapidly rising death toll. Much remains unknown about host cells and tissues affected by coronavirus infections, including the hematopoietic system. Here, we discuss the recent findings examining effects that coronavirus infection or exposure has on hematopoietic cells and the clinical implications for these effects. RECENT FINDINGS: Recent studies have centered on SARS-CoV-2, demonstrating that hematopoietic stem and progenitor cells and mature immune cells may be susceptible to infection and are impacted functionally by exposure to SARS-CoV-2 Spike protein. These findings have important implications regarding hematologic complications arising from COVID-19 and other coronavirus-induced disease, which we discuss here. SUMMARY: Infection with coronaviruses sometimes leads to hematologic complications in patients, and these hematologic complications are associated with poorer prognosis. These hematologic complications may be caused by coronavirus direct infection or impact on primitive hematopoietic cells or mature immune cells, by indirect effects on these cells, or by a combination thereof. It is important to understand how hematologic complications arise in order to seek new treatments to improve patient outcomes.


Assuntos
COVID-19/metabolismo , Células-Tronco Hematopoéticas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/mortalidade , COVID-19/patologia , Células-Tronco Hematopoéticas/patologia , Humanos
5.
Leukemia ; 35(7): 2064-2075, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33159180

RESUMO

The hematopoietic system is sustained by a rare population of hematopoietic stem cells (HSCs), which emerge during early embryonic development and then reside in the hypoxic niche of the adult bone marrow microenvironment. Although leptin receptor (Lepr)-expressing stromal cells are well-studied as critical regulators of murine hematopoiesis, the biological implications of Lepr expression on HSCs remain largely unexplored. We hypothesized that Lepr+HSCs are functionally different from other HSCs. Using in vitro and in vivo experimental approaches, we demonstrated that Lepr further differentiates SLAM HSCs into two distinct populations; Lepr+HSCs engrafted better than Lepr-HSCs in primary transplant. Compared to Lepr-LSK cells, Lepr+LSK cells were highly enriched for extensively repopulating and self-renewing HSCs. Molecularly, Lepr+HSCs were characterized by a pro-inflammatory transcriptomic profile enriched for Type-I Interferon and Interferon-gamma (IFN-γ) response pathways, which are known to be critical for the emergence of HSCs in the embryo. We conclude that although Lepr+HSCs represent a minor subset of HSCs, they are highly engrafting cells that possess embryonic-like transcriptomic characteristics, and that Lepr can serve as a reliable marker for functional long-term HSCs, which may have potential clinical applicability.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptores para Leptina/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Feminino , Hematopoese/fisiologia , Humanos , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco/fisiologia , Células Estromais/metabolismo
6.
Stem Cell Rev Rep ; 16(6): 1020-1048, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33145673

RESUMO

There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.


Assuntos
Envelhecimento/fisiologia , Hematopoese/fisiologia , Animais , Epigênese Genética , Células-Tronco Hematopoéticas/fisiologia , Humanos , Microbiota , Espécies Reativas de Oxigênio/metabolismo
7.
Stem Cells ; 38(11): 1454-1466, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761664

RESUMO

Understanding physiologic T-cell development from hematopoietic stem (HSCs) and progenitor cells (HPCs) is essential for development of improved hematopoietic cell transplantation (HCT) and emerging T-cell therapies. Factors in the thymic niche, including Notch 1 receptor ligand, guide HSCs and HPCs through T-cell development in vitro. We report that physiologically relevant oxygen concentration (5% O2 , physioxia), an important environmental thymic factor, promotes differentiation of cord blood CD34+ cells into progenitor T (proT) cells in serum-free and feeder-free culture system. This effect is enhanced by a potent reducing and antioxidant agent, ascorbic acid. Human CD34+ cell-derived proT cells in suspension cultures maturate into CD3+ T cells in an artificial thymic organoid (ATO) culture system more efficiently when maintained under physioxia, compared to ambient air. Low oxygen tension acts as a positive regulator of HSC commitment and HPC differentiation toward proT cells in the feeder-free culture system and for further maturation into T cells in the ATO. Culturing HSCs/HPCs in physioxia is an enhanced method of effective progenitor T and mature T-cell production ex vivo and may be of future use for HCT and T-cell immunotherapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Condicionamento Pré-Transplante/métodos , Diferenciação Celular , Humanos
8.
Stem Cell Rev Rep ; 16(5): 946-953, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32748332

RESUMO

Mobilized peripheral blood (mPB) hematopoietic stem (HSCs) and progenitor (HPCs) cells are primary sources for hematopoietic cell transplantation (HCT). Successful HCT requires threshold numbers of high-quality HSCs to reconstitute hematopoiesis long-term. Nevertheless, considerable percentages of patients and healthy donors fail to achieve required thresholds of HSCs with current mobilization regimens. In this present study we demonstrate that similar to mouse bone marrow (BM) and human cord blood, collection and processing of mouse Granulocyte Colony Stimulating Factor (G-CSF)-, AMD3100/Plerixafor- or G-CSF plus AMD3100/Plerixafor-mobilized HSCs in 3% O2 results in enhanced numbers of rigorously-defined phenotypic and for G-CSF - and G-CSF plus AMD3100/Plerixafor - mPB enhanced functionally-engrafting HSCs. These results may be of potential clinical utility. Graphical Abstract.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Oxigênio/farmacologia , Manejo de Espécimes , Animais , Benzilaminas/farmacologia , Contagem de Células , Ciclamos/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL
9.
Curr Stem Cell Rep ; 4(2): 149-157, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31275803

RESUMO

PURPOSE OF REVIEW: This review summarizes the role of hypoxia and hypoxia-inducible factors (HIFs) in the regulation of stem cell biology, specifically focusing on maintenance, differentiation, and stress responses in the context of several stem cell systems. Stem cells for different lineages/tissues reside in distinct niches, and are exposed to diverse oxygen concentrations. Recent studies have revealed the importance of the hypoxia signaling pathway for stem cell functions. RECENT FINDINGS: Hypoxia and HIFs contribute to maintenance of embryonic stem cells, generation of induced pluripotent stem cells, functionality of hematopoietic stem cells, and survival of leukemia stem cells. Harvest and collection of mouse bone marrow and human cord blood cells in ambient air results in fewer hematopoietic stem cells recovered due to the phenomenon of Extra PHysiologic Oxygen Shock/Stress (EPHOSS). SUMMARY: Oxygen is an important factor in the stem cell microenvironment. Hypoxia signaling and HIFs play important roles in modeling cellular metabolism in both stem cells and niches to regulate stem cell biology, and represent an additional dimension that allows stem cells to maintain an undifferentiated status and multilineage differentiation potential.

11.
Nat Immunol ; 18(8): 877-888, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650480

RESUMO

The origin and specification of human dendritic cells (DCs) have not been investigated at the clonal level. Through the use of clonal assays, combined with statistical computation, to quantify the yield of granulocytes, monocytes, lymphocytes and three subsets of DCs from single human CD34+ progenitor cells, we found that specification to the DC lineage occurred in parallel with specification of hematopoietic stem cells (HSCs) to the myeloid and lymphoid lineages. This started as a lineage bias defined by specific transcriptional programs that correlated with the combinatorial 'dose' of the transcription factors IRF8 and PU.1, which was transmitted to most progeny cells and was reinforced by upregulation of IRF8 expression driven by the hematopoietic cytokine FLT3L during cell division. We propose a model in which specification to the DC lineage is driven by parallel and inheritable transcriptional programs in HSCs and is reinforced over cell division by recursive interactions between transcriptional programs and extrinsic signals.


Assuntos
Linhagem da Célula , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Fatores Reguladores de Interferon/metabolismo , Leucopoese , Células-Tronco Multipotentes/citologia , Animais , Diferenciação Celular , Sangue Fetal , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Regulação para Cima
12.
Cell Rep ; 19(8): 1586-1601, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538178

RESUMO

Immunodeficiency is one of the most important causes of mortality associated with Wolf-Hirschhorn syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main genes responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness, and proliferation, demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.


Assuntos
Linfócitos B/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Síndrome de Wolf-Hirschhorn/metabolismo , Animais , Apoptose , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Replicação do DNA , Centro Germinativo/citologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Heterozigoto , Camundongos , Recombinação Genética/genética , Estresse Fisiológico
13.
Cell Rep ; 16(1): 48-55, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320916

RESUMO

During class switch recombination (CSR), B cells replace the Igh Cµ or δ exons with another downstream constant region exon (CH), altering the antibody isotype. CSR occurs through the introduction of AID-mediated double-strand breaks (DSBs) in switch regions and subsequent ligation of broken ends. Here, we developed an assay to investigate the dynamics of DSB formation in individual cells. We demonstrate that the upstream switch region Sµ is first targeted during recombination and that the mechanism underlying this control relies on 53BP1. Surprisingly, regulation of break order occurs through residual binding of 53BP1 to chromatin before the introduction of damage and independent of its established role in DNA repair. Using chromosome conformation capture, we show that 53BP1 mediates changes in chromatin architecture that affect break order. Finally, our results explain how changes in Igh architecture in the absence of 53BP1 could promote inversional rearrangements that compromise CSR.


Assuntos
Quebras de DNA de Cadeia Dupla , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Recombinação Genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Sequência de Bases , Cromatina/metabolismo , Camundongos , Ligação Proteica , Análise de Célula Única
14.
J Immunol Methods ; 425: 21-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26056939

RESUMO

Different dendritic cell (DC) subsets co-exist in humans and coordinate the immune response. Having a short life, DCs must be constantly replenished from their progenitors in the bone marrow through hematopoiesis. Identification of a DC-restricted progenitor in mouse has improved our understanding of how DC lineage diverges from myeloid and lymphoid lineages. However, identification of the DC-restricted progenitor in humans has not been possible because a system that simultaneously nurtures differentiation of human DCs, myeloid and lymphoid cells, is lacking. Here we report a cytokine and stromal cell culture that allows evaluation of CD34(+) progenitor potential to all three DC subsets as well as other myeloid and lymphoid cells, at a single cell level. Using this system, we show that human granulocyte-macrophage progenitors are heterogeneous and contain restricted progenitors to DCs.


Assuntos
Células Dendríticas/imunologia , Células-Tronco/imunologia , Células Estromais/imunologia , Antígenos CD34/imunologia , Medula Óssea/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Células Cultivadas , Células Progenitoras de Granulócitos e Macrófagos/imunologia , Hematopoese/imunologia , Humanos , Linfócitos/imunologia
15.
J Exp Med ; 212(3): 385-99, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25687283

RESUMO

In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34(+) hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.


Assuntos
Células Dendríticas/citologia , Sangue Fetal/citologia , Monócitos/citologia , Animais , Antígenos CD34/metabolismo , Medula Óssea , Células da Medula Óssea , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica , Granulócitos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Mutantes , Análise de Célula Única , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...